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Ahstract--A control volume based numerical solution is described for the fully developed mixed convection 
in vertical ducts of elliptic cross-section. The duct wall is supplied with a uniform axial heat rate while the 
thickness and thermal conductivity of the duct wall are such that the wall temperature is circumferentially 
uniform. Results for velocity and temperature distributions, friction factor, Nusselt number and critical 
Rayleigh number are presented for a wide range of duct aspect ratios and Rayleigh numbers. It is found 
that during mixed convection, fluid with a higher axial velocity exists around the foci of the elliptical cross- 
section, leading to substantial heat transfer enhancement in this region of the duct. The ratio of friction 
factor during mixed convection to that during forced convection is low in elliptical ducts compared to that 
in a circular duct. Also, the ratio of Nusselt number to friction factor is higher for elliptic ducts compared 
to that for a circular duct, irrespective of the value of the Rayleigh number. The critical Rayleigh number, 
at which flow reversal is initiated in the core region, is higher for elliptic ducts compared to that for a 

circular duct. 

1. INTRODUCTION 

In many heat transfer applications temperature rise 
of the fluid participating in energy transfer is high 
enough for the effect of buoyancy to be significant. 
This free convectien effect distorts the velocity and 
temperature distribution of the fluid in ducts con- 
siderably, leading to higher values of friction factor 
and heat transfer coefficient than those in the forced 
convection regime alone (cf. Prakash and Patankar 
[1]). In modern engineering equipment, non-circular 
ducts are being used in increasing numbers as is evi- 
dent from the growing literature in this field (cf. Shah 
and London [2], and Kakac et  al. [3]). 

Fully developed mixed convection in vertical ducts 
has been investigated by numerous authors. Of them, 
Morton [4] and Tao [5] presented analytical solutions 
for flow through circular ducts, while Prakash and 
Patankar [ 1] presenLed numerical results for internally 
finned circular ducts. Maitra and Subba Raju [6] ana- 
lyzed flow through concentric cylindrical annuli, while 
Sathyamurthy et al. [7] analyzed flow through eccen- 
tric cylindrical annuli. Han [8] analyzed the case of 
rectangular ducts with heat generation in the fluid, 
while Tao [9] analyzed rectangular as well as parallel 
plate ducts with and without heat generation. Flow 
through circular ducts was studied by Lu [10], while 
flow through triangular ducts with heat generation 

was analyzed by Aggarwala and Iqbal [11] employing 
membrane analogy. Later Iqbal et al. [12] employed 
a variational formulation to analyze flow through tri- 
angular and rhombic ducts. References [1, 4-12] deal 
with circumferentially uniform wall temperature and 
uniform axial heat rate. 

Iqbal et al. [13] presented a point matching solution 
for flow through polygonal ducts for the conditions 
of uniform circumferential heat flux as well as uniform 
circumferential temperature on the duct walls. Later 
Iqbal et al. [14] presented a variational solution for 
arbitrary shaped ducts including elliptic ducts. 
However, they considered circumferentially uniform 
wall heat flux only, and did not investigate the critical 
Rayleigh number at which flow reversal takes place; 
the range of Rayleigh numbers considered by them is 
0-5000 only. The condition of circumferentially uni- 
form wall temperature is more important especially in 
cases where the duct wall is thick and is made up of 
highly conducting material. A review of heat transfer 
literature dealing with flow through elliptical ducts [3, 
15-26] indicates that the solution for fully developed 
mixed convection in vertical elliptic ducts with cir- 
cumferentially uniform wall temperature and uniform 
axial heat rate has not been reported. The present 
analysis aims to fill this gap. 

2. ANALYSIS 

~" Author to whom correspondence should be addressed. 
We consider steady, fully developed, laminar flow 

of a Newtonian fluid in a vertical elliptic duct, and 
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NOMENCLATURE 

semi major and minor axes of the R~ 
elliptical section, respectively t 
focal distance of the elliptical section tm 
specific heat of the fluid tw 
hydraulic diameter of the elliptical T 
section, nb/ E(m) 
complete elliptic integral of second Tm 
kind w 
friction factor during forced w 
convection W 
friction factor during mixed W .... 
convection x 
acceleration due to gravity 
circumferentially averaged heat y 
transfer coefficient 
(c/D)(sinh 2 t 1 + sin 2 4) I/2 z 
thermal conductivity of the fluid 
(1-22) 1/2 Z 

average Nusselt number during mixed 
convection 
average Nusselt number during forced 
convection 
number of control volumes in the fl 
cross-section for the variable ~O 
dimensional pressure 
non-gravitational pressure, p + pogz rl 
dimensionless pressure, p* D / (#~ Re) qw 
heat rate per unit duct length, 2 
nabpov~Cp dtm/dz l~ 
residue of the discretized equation for v 
ith control volume for the variable q; P0 
Rayleigh number, fly(dtm/dz)D4/(w) 
critical Rayleigh number = one at 
which reverse flow is initiated (I)ma x 

Reynolds number, v~D/v 

absolute sum of ri~ taken over n~ 
temperature of the fluid 
mean temperature of the fluid 
temperature of the duct wall 
dimensionless temperature, 
k(t-  tw)/O' 
dimensionless mean temperature 
axial velocity in the duct 
average axial velocity in the duct 
dimensionless counterpart of w, w/~ 
maximum value of W 
cross-stream Cartesian coordinate 
(Fig. 1) 
cross-stream Cartesian coordinate 
(Fig. 1) 
axial coordinate (along the flow 
direction) 
dimensionless axial coordinate, 
z/(DRe). 

Greek symbols 
thermal diffusivity of the fluid 
coefficient of volumetric expansion 
a small number for checking 
convergence 
elliptic cylinder coordinate (Fig. 1) 
value of q at the curved wall 
aspect ratio of the duct, b/a 
dynamic viscosity of the fluid 
kinematic viscosity of the fluid 
density of the fluid at t = tw 
dimensionless temperature of fluid, 
T/Tm 
maximum value of ~b 
elliptic cylinder coordinate (Fig. 1). 

analyze the case where buoyancy aids the flow, that 
is, if the flow is upwards the fluid is being heated 
(heated upflow), and if the flow is downwards the 
fluid is being cooled (cooled downflow). The other 
situations of heated downflow and cooled upflow are 
not of much practical significance [1] and are therefore 
not considered. A uniform heat rate per unit duct 
length is imposed on the duct. The duct wall is thick 
and made up of highly conducting material so that at 
any axial location the wall temperature is cir- 
cumferentially uniform. At moderate velocities, vis- 
cous dissipation and compression work are considered 
negligible. The fluid properties are also considered 
constant except for density for which the well known 
Boussinesq approximation is used. 

We use elliptic cylinder coordinates (~, q, z) as 
shown in Fig. 1. This coordinate system consists of an 
orthogonal family of confocal ellipses and hyperbolas 
in a plane, translated in the third (axial here) direction 

normal to the plane. The surfaces r /=  constant are 
the confocal elliptic cylinders 

X 2 y 2  
+ - - - 1  

(ccoshq) 2 (c sinh ~/) 2 

while the surfaces ~ = constant are the hyperbolic 
cylinders 

x 2 y2 
- -  1. 

(c cos ~)2 (c sin 4) 2 

The normalized equations for conservation of 
momentum, mass and energy are 

Axial momentum : 

1 1-02 W c ~2 W7 dP [E(m)] 2 
H~ L ~ -  q- ~r/zJ I dZ ~ RaT (1) 

Integral continuity : 
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~. a ~Y g=rc/2 "q='qtu 

Fig. 1. Elliptic-cylinder coordinate system. 

~=/2 [.~ W H  2 d~ d r / -  (2) 
r [E(m)] 2 

o j.=,o 47t;~ 

Energy equation : 

1 [~2T ~2T-]--I lt2W 
H2 L-~]-~5- + '~~2 j [E(m)]2 (3) 

where the variables are defined in the Nomenclature. 
Owing to symmetry, only a quarter of the duct needs 
to be considered figr analysis. Equations (1) and (3) 
are therefore subject to the following boundary con- 
ditions : 

W = O = T  

OW/O~ = 0 = OT/t3,~ 

aW/&t = 0 = OT/&l 

From first principles 

along t /=  t/,~ for all 

along ~ = 0, n/2 for all t/ 

along t /=  0 for all 4- (4) 

and definitions given in the 
Nomenclature, the, product of friction factor and 
Reynolds number is given by 

f R e  = (1/2) dP/dZ  

and the Nusselt number is 

~D 1 re2 
Nu (5) 

k 4Tin [E(m)] z 

where 

-- W T H  2 d~ dr/. (6) 
Tm [E(m)] z j¢=0 j,=0 

In equations (1)-(3) the governing parameters are the 
Rayleigh number, Ra, and the duct aspect ratio, 2. 

3. SOLUTION 

Numerical solution to the set of coupled governing 
equations (1)-(4) is obtained iteratively by employing 
the control volume based discretization method [27]. 
The axial pressure gradient in the duct is evaluated 
via the integral continuity equation using the method 
proposed by Raithby and Schneider [28]. The dis- 
cretization procedure yields a set of algebraic equa- 
tions for each variable. The pentadiagonal system of 
algebraic equations for each variable is solved by a 
plane-by-plane method [29]. This method is an exten- 
sion of the Thomas algorithm for the tridiagonal sys- 
tem of equations. Convergence is assumed once the 
absolute sum of the residue R~, corresponding to the 
variable ~k in the discretization equation is less than 
where 

n¢ 

R, = y~ Ir,~l. 
i--I 

The value of ~ is taken to be l0 -5 for the results 
presented here. Solutions for higher values of Ray- 
leigh number are obtained starting with lower Ray- 
leigh number solutions as the initial guess. This 
reduces the number of iterations for convergence. 
Relaxation factors in the range 0.1-0.5 are used. The 
relaxation factor is lower for higher values of Rayleigh 
number and lower values of the aspect ratio. 

All results presented here for elliptic ducts were 
obtained on two grid patterns in the cross-stream (~- 
t/) plane, namely a 22 x 22 and a 42 x 42 grid. The 
coarse grid size is exactly double the fine grid size. 
Orids were packed near the duct wall where large 
velocity and temperature gradients exist. For 2 = 0.1, 
Table 1 compares the friction factor, Nusselt number 
and the maximum velocity in the duct for the two grid 
patterns at various Rayleigh numbers. The maximum 
difference occurs at the highest Rayleigh number but 
is only 1.2% in the maximum velocity, and less than 
0.1% in friction factor and Nusselt number. Similar 
results were obtained for other aspect ratios as well. 
Hence the grid pattern of 42 x 42 is satisfactory. 

Table 1. Comparison of coarse and fine grid results for 2 = 0.1 

Ra 

Wmax 2 fRe Nu 
Grid Grid Grid Grid Grid Grid 

22 x 22 42 x 42 22 x 22 42 x 42 22 × 22 42 x 42 

0 1.994 1.999 38.57 38.61 5.124 5.125 
6000 1.920 1.922 251.98 252.13 8.259 8.252 

20 000 2.514 2.520 614.29 615.00 10.894 10.879 
38 000 2.869 2.904 991.25 992.13 12.889 12.878 
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Fig. 2. Effect of Rayleigh number on friction factor; [Z, 
numerical solution for circular tubes by Prakash and Pat- 

ankar [1]. 

4. A C C U R A C Y  

In order to verify the computer  program, the well 
studied problem of mixed convection through a ver- 
tical circular duct was computed first. The aspect ratio 
for this study was taken to be 0.999 since the coor- 
dinate transformation is singular for 2 = 1. The pre- 
dicted variation of  friction factor and Nusselt number 
with Rayleigh number is shown in Figs. 2 and 3. Also 
shown in these figures are the numerical results of  
Prakash and Patankar [1]. Clearly, the comparison is 
excellent. The case of  pure forced convection in elliptic 
ducts was also computed. The present results for fric- 

Table 2. Results for pure forced convection; comparison 
with ref. [2], p. 248 

fRe Nu 
2 Present Ref. [2] Present Ref. [2] 

0.7 16.238 16.244 4.417 4.422 
0.5 16.819 16.823 4.552 4.558 
0.3 17.889 17.896 4.802 4.803 
0.1 19.307 19.314 5.125 5.124 

tion factor and Nusselt number are compared with 
the results reported by Shah and London [2] in Table 
2. The comparison is again very good. 

5. R E S U L T S  A N D  D I S C U S S I O N  

Results were obtained for aspect ratio 2 varying 
from 0.1 to 0.999, Since fully developed flows involv- 
ing reverse flows are unlikely in a practical situation, 
the Rayleigh number was varied from zero to a value 
at which flow reversal takes place. This critical value 
of  the Rayleigh number depends upon the aspect ratio. 

The ratios (fifo and Nu/Nuo) of  friction factor and 
Nusselt number during mixed convection to those in 
pure forced convection are shown in Figs. 2 and 3 as 
a function of  Ra for various 2. It is clear from Fig. 2 
that fifo increases with Ra for elliptic ducts, much like 
that for a circular duct. For  a given Rayleigh number, 
the value of fifo increases with the aspect ratio. F rom 
Fig. 3, it is clear that Nu/Nuo also increases with Ra, 
similar to fifo, but at a much slower rate. Up  to 
Ra = 3800, the value of Nu/Nuo is high for low aspect 
ratios. However,  for Ra > 3800, the contrary is true. 
In order to compare elliptic ducts with circular ones, 
the value of  Nu/fRe is plotted in Fig. 4. It is seen that 
when the aspect ratio is lower, the ratio Nu/fRe is 

2 . 5 0  

I I x.=o.V I 0.3 

2 . 2 0  - -  O, 5 -71 

1 .90  

Z 

~ 1 . 6 0  

1 . 30 

1.00 
2 3 4 

Log(Ra) 

Fig. 3. Effect of gayleigh number on Nusselt number ; IS], 
numerical solution for circular tubes by Prakash and Pat- 

ankar [1]. 
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Fig. 4. Effect of Rayleigb number on the ratio (Nu/fR¢). 
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Fig. 5. Dimensionless axial velocity along the minor and major axes ; (a) (2 = 0.1) ; (b) (). = 0.5). 

higher for the entire range of Rayleigh numbers ana- 
lyzed. However, the superiority of elliptic ducts over 
circular ones is not significant for very high values of 
the Rayleigh number. 

The distribution of axial velocity along the minor 
and major axes of the duct are presented in Figs. 5(a) 
and (b) for aspect ratios 0.1 and 0.5, respectively. It 
can be seen that as Ra increases, the fluid adjacent to 
the duct wall is accelerated and that in the core is 
decelerated. This holds for all values of the aspect 
ratio. Also, the velocity values on the major axis are 
higher than those on the minor axis for all values of 2 
and Ra. For a given Ra, the lower the value of 2, the 
lower is the maximum velocity along the minor axis, 
and higher is the maximum velocity along the major 

axis. This implies that as ellipticity increases, the flow 
is distributed with increased non-uniformity at a given 
value of Ra. Also, the location of maximum velocity 
along the major axis moves towards the wall as 2 
decreases at a given Rayleigh number. 

The temperature distribution along the minor and 
major axes of the duct are shown in Figs. 6(a) and (b) 
for aspect ratios 0. I and 0.5, respectively. It is obvious 
from these figures that the temperature distribution is 
more uniform for higher values of Ra. Also, for elliptic 
ducts, the heat flux is quite non-uniform along the 
duct circumference, unlike that in a circular duct. The 
heat flux is higher in the flatter region of the duct 
compared to that in the curved region. This is evident 
from the fact that for 2 = 0.1, the ratio of  heat flux 
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Fig. 6. Dimensionless temperature along the minor and major axes; (a) (2 = 0.1) ; (b) (,~ = 0.5). 

along the minor axis to that along the major axis is 
about three for the highest Ra of 38 000. For a given 
axial heat rate, heat flux in the curved region increases 
dramatically with Ra. This is more so for lower values 
of 2. A reason for this behavior is the existence of 
higher axial velocity fluid around the foci of the duct. 
Comparing Fig. 6(a) with 6(b), it is clear that uni- 
formity in temperature increases with ellipticity for a 
given Rayleigh number. 

Shown in Figs. 7(a)-(c) are the contours of dimen- 
sionless axial velocity (right half) and temperature 
(left half) for various values of 2 and Ra. The contours 
are shown at intervals of 0.1. The locations of 
maximum axial velocity and temperature are also indi- 
cated with an x.  It can be observed from these figures 
that as buoyancy increases, higher axial velocities exist 
around the foci of the elliptic duct. The concentration 
of iso-W curves near the foci and increase of Wmax 
leads to increased wall shear at higher values of Ra. 

For low values of Ra and high values of 2, the tem- 
perature contours are nearly concentric ellipses. How- 
ever, the contours get considerably distorted for high 
values of Ra and low values of 2. The location of 
maximum temperature shifts away from the duct 
center as Ra increases. With increasing Ra, the higher 
concentration of isotherms near the foci indicates 
enhanced heat flux in that region of the duct. This is 
the outcome of larger momentum of the fluid in that 
region. 

As pointed out already, the acceleration of fluid 
adjacent to the duct wall leads to retardation in the 
core region. At a certain value of Rayleigh number, 
known as the flow-reversal or critical Rayleigh 
number, the core-region flow gets reversed. The criti- 
cal Rayleigh number is plotted against the duct aspect 
ratio in Fig. 8. For mildly elliptic ducts (2 ~< 0.7), the 
critical Rayleigh number is close to the circular duct 
value of nearly 104 . However, as the aspect ratio falls 



Laminar mixed convection in vertical elliptic ducts 751 

(a) 

1.0 

~0.5 

0. 

Ro= 6000 
Wma×=l.g2 

ax=l.SS 

- ~ R~= 8ee 

/ / ' ~ / ~  WmQx= 1 "$7 

. / ~ ~  ~~,o~=1.67 

0. 0.5 1.0 

x/c 

(b) 

1.0 

"~0.S 

0 

Ro= 10800 

R~= 6see 

Ro= 2eee 

I , I I 

0 0.5 1.e 
x / a  

(c) 
= ! 2800 

I l I 

0.  0 , 5  1.0 

x / o  

Fig. 7. Isotherms and iso-axial velocity contours  ; (a) (2 = 0.l)  ; (b) (.~ = 0.5) ; (c) (2 = 0.7). 
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Fig. 8. Critical Rayleigh number vs the aspect ratio. 

below 0.5, the critical Ra increases sharply. This 
implies tha t  a s t ronger  buoyancy  is required to reverse 
the flow in elliptic ducts t han  tha t  in circular ducts. 

6 .  C O N C L U S I O N S  

The prob lem of  fully developed, laminar  mixed con- 
vection in vertical elliptic duets with uni form axial 
heat  rate and  circumferential ly un i fo rm wall tem- 
pera ture  has been analyzed. Numer ica l  results based 
on  a control  volume based discretization me thod  have 
been presented for a wide range of  parameters .  The 
following are the main  conclusions.  

(1) Dur ing  mixed convect ion in elliptical ducts,  
fluid with a high axial velocity exists a round  the fool. 

(2) For  a given Rayleigh number ,  the lower the 
aspect ratio, the higher  is the m a x i m u m  velocity and  
the closer it is to the loci of  the duct. 

(3) For  the entire range of  Rayleigh numbers ,  the 
rat io of  Nussel t  n u m b e r  to the friction factor  is high 
when the aspect rat io  is low. 

(4) The critical Rayleigh n u m b e r  is higher  for lower 
values of  the aspect ratio. 
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